
On the Weight of Universal Insertion GrammarsLila Kari1 Petr Sos��k1;21Department of Computer ScienceUniversity of Western Ontario, London, ON, Canada, N6A 5B7,[lila,sosik]@csd.uwo.ca2Institute of Computer ScienceSilesian University, Opava, Czech Republicpetr.sosik@fpf.slu.czAbstractWe study the computational power of pure insertion grammars.We show that pure insertion grammars of weight 3 can characterize allrecursively enumerable languages. This is achieved by either applyingan inverse morphism and a weak coding, or a left (right) quotientwith a regular language. A consequences for the closure properties ofinsertion grammars are shown. We also study an application in DNAcomputing and improve some known results concerning the power ofinsertion-deletion DNA systems.1 IntroductionInsertion grammars have been introduced and studied in [2]. The motivationfor their study originates in mathematical linguistics, as they are similarto contextual grammars [3, 5] and to pure grammars with a speci�c typeof rules. Their computational power was further studied in [6] where thefollowing result was proven: Insertion grammars of weight at least 7 cancharacterize all recursively enumerable languages via a weak coding and amorphism. An analogous result was shown using the left quotient with aregular language instead of a weak coding and a morphism, on the one hand.On the other hand, there exist linear languages which cannot be generatedby any insertion grammar (without the aid of above mentioned operations).This fact suggests rather poor closure properties of the class of insertion1



languages. Another immediate consequence is the incomparability of thisclass with many other language classes closed either under weak codings andmorphisms, or under left quotient with a regular language.The upper bound for the weight necessary to characterize the family ofrecursively enumerable languages was improved to 5 in [4]. In this paperwe show that weight 3 is enough to achieve universality in the above sense.Our construction is similar to that in [4] in that it uses a special symbol$ to mark deleted symbols in a sentential form. In our proof we use twomarking symbols $, #, and we achieve an improvement in the length ofcontext thanks to their mutual interplay.Finally, we deal with insertion-deletion DNA systems. These are mo-tivated by the fact that the contextual insertion and/or deletion in DNAfrequently occurs in certain cell types. Formalization is based on operationsvery similar to those used in insertion grammars. We show that as a conse-quence of the above mentioned results, some theorems in [7] are improved.Recall that a pure grammar is a grammar that has no non-terminals.Rewriting is de�ned in the standard way and a speci�c pure grammar isde�ned by axioms (a set of words over the terminal alphabet) and a �niteset of rewriting rules. All words derivable from the axioms belong to thelanguage of the pure grammar.De�nition 1 A (pure) insertion grammar of weight n � 0 is a triple G =(V;A; P ); where{ V is a �nite alphabet,{ A � V � is a �nite set of axioms,{ P is a �nite set of insertion rules of the form (u; x; v); for u; x; v 2 V �;{ n = maxfjuj j (u; x; v) 2 P or (v; x; u) 2 Pg:De�nition 2 A derivation step of a insertion grammar G = (V;A; P ) isde�ned by the relation ): V � �! V � such thaty ) z i� y = w1uvw2; z = w1uxvw2; (u; x; v) 2 P; w1; w2 2 V �:The language generated by an insertion grammar G = (V;A; P ) is de-�ned in the usual manner as the set L(G) = fz � V � j y )� z; y 2 Ag;where )� is the re
exive and transitive closure of ) : We denote by Sn;n � 0 the families of languages generated by the insertion grammars ofweight at most n: Clearly, Sn � Sm for n � m:We also recall the following de�nition from [8].2



De�nition 3 A type 0 grammar G = (N;T; P; S) is in Penttonen normalform, if each rule in P has one of the formsA! a; A! BC; AB ! AC; A! �; for A;B;C 2 N; a 2 T:A weak coding is a morphism that maps each letter onto a letter or ontothe empty word.2 Universality with inverse morphism and weakcodingTheorem 4 For each recursively enumerable language L there exists a mor-phism h; a weak coding g and a language L1 2 S3 such that L = g(h�1(L1)):Proof. Let G = (N;T; P; S) be a recursively enumerable grammar inPenttonen normal form, generating a language L: Consider the followinginsertion grammar: G1 = (V; cccS; P1);where V = N[N 0[T [f$;#; cg; N 0 = fA0 jA 2 Ng; and $;#; c are symbolsnot in N [N 0 [ T: We furthermore denote Nc = N [ fcg: The set of rulesP1 is constructed as follows:1. For each rule A ! a in P there are rules (x; a$; Ay) in P1; for allx 2 N3c ; y 2 (V n f#g):2. For each rule A! BC in P there are rules (x;BC$; Ay) in P1; for allx 2 N3c ; y 2 (V n f#g):3. For each rule AB ! AC in P there are rules (xA;C$; By) in P1; forall x 2 (V n f$g); y 2 (V n f#g):4. For each rule A! � in P there are rules (x; $; Ay) in P1; for all x 2 N3cand y 2 (V n f#g):In addition to the above, P1 contains the following rules:5. (x;B0; $Y B) for all x 2 (V 2Nc [ $V#); Y 2 (N [N 0); B 2 N:6. (B0$Y;#$; Bx) for all x 2 (V 2 n f#Bg); Y 2 (N [N 0); B 2 N ;7. (B0;#; $Y#) for all Y 2 (N [N 0); B 2 N:8. (x;B$; B0#) for all x 2 (V n f$g); B 2 N:3



9. (x;B;#B) for all x 2 (V (V n f$g)(N n fBg) [ (N [ f#g)$(N [N 0));B 2 N:10. (xB#; $; B) for all x 2 (V n f$g); B 2 N:The insertion grammar G1 simulates step-by-step the derivation of G:However, G can rewrite or delete some symbols of the generated sententialform, which is impossible in insertion grammars. Hence a marking symbol$ is introduced into G1: A nonterminal from N [N 0 which is preceded by $is marked as deleted. This is achieved by the rules of types 1{4 of G1:This marking system introduces another problem: pairs of unmarkednonterminals which should be subject to rules of the form AB ! AC can beseparated by one or more marked symbols. Such a string can adopt the formA$C1 : : : $CnB; n � 1: Hence the rules 5{8 are added, allowing the symbolB to \migrate" to the left-hand side of a substring of this form. Having thesubstring $Y B for an arbitrary B 2 N; Y 2 (N [N 0); these rules allow forthe derivation$Y B ) B0$Y B ) B0$Y#$B ) B0#$Y#$B ) B$B0#$Y#$B (1)At the end all the symbols from N [N 0 are marked, except B: Iteratingthe above derivation, the string A$C1 : : : $CnB can be rewritten as ABx;where in x all the nonterminals are marked. Still, this scheme introducesanother symbol # which can separate pairs of nonterminals. Therefore therules 9 and 10 are introduced, allowing for the derivation#B ) B#B ) B#$B (2)for an arbitrary B 2 N: This again allows the symbol B to migrate towardsthe left end of the string. Finally, let h : (V nf$g)�) �! V � be the morphismde�ned byh(x) = $x; x 2 (N [N 0); and h(y) = y; y 2 (T [ fc;#g);and g : V � �! T � be the weak coding de�ned byg(x) = �; x 2 (V n T ); and g(y) = y; y 2 T:We show that L(G) = g(h�1(L(G1))):(i) L(G) � g(h�1(L(G1))):One can easily verify that if the rules of G1 are used in the above4



described manner, then G1 correctly simulates all the derivations ofG: During this derivation, a certain amount of auxiliary substrings ofthe form $A; $A0 and # can be inserted into the derived string. Theinverse morphism h�1 �lters only the sentential forms where all thenonterminals from N [N 0 are preceded by $ signs. Hence h�1 selectsfrom L(G1) those and only those sentential forms where all nontermi-nals have been \deleted". Finally, g removes all the nonterminals andauxiliary symbols. Hence, L(G) � g(h�1(L(G1))):(ii) g(h�1(L(G1))) � L(G):We must show thatG1 can produce no other sentential forms w with allthe nonterminals marked than those that correspond to derivations inG: First, observe that the substrings $$, ##, $# can never occur in w:Observe also that during an incomplete series of applications of rules5{8 and 9{10 there exists always at least one unmarked nonterminalfrom N [N 0. Consequently, only those sentential forms that are theresult of a \complete" series of applications of rules 5-8 and 9-10 areselected when applying h�1 (hence when applying g � h�1).Consider now the rules 5{8.{ Given a substring of the form $Y B of w; rule 5 can be applied onlyonce to it, producing B0$Y B: Observe also that B0$Y B cannotbe produced by an application of any other rule than 5.{ Following an application of rule 5, only rule 6 can follow, whichinserts any symbols into B0$Y B (not counting its pre�xes or suf-�xes), resulting in the string B0$Y#$B: Observe that 6 can beapplied only to a string of the form B0$Y B produced by rule 5.{ Similarly, the only rule that can insert anything into B0$Y#$Bis rule 7. Again, the substring B0$Y#$ to which rule 7 can beapplied, can be produced only as a result of the two previoussteps.{ Finally, the substring xB0#; x 6= $; allowing an application ofthe rule 8 (and of no other rule), can occur only as a result of thepreviously described steps.Hence, after an application of rule 5, the whole derivation (1) mustinevitably proceed.Analogously, consider a substring of the form xB#B; x 2 V; producedby rule 9. The only rule which can insert anything into this string is5



rule 10, resulting in the derivation (2). Conversely, the application of10 is allowed only by a previous application of 9.Of course, the derivations (1) and (2) can be interlaced by an appli-cation of other rules in other parts of the sentential form w: However,these other rules cannot interfere with these derivations. Consider forinstance the derivationx$Y#B)(9) x$Y B#B)(5) xB0$Y B#Bfor an x 2 V; Y 2 (N [N 0); B 2 N: In this situation rule 6 cannot beapplied (because of its right context) until rule 10 was applied �rst.Hence the derivation (2) happening at the right-hand side of the stringis completed, before the derivation (1) can continue.We can conclude that each of the rules 6{8 and 10 requires a previousapplication of a rule with the index smaller by one, as we have shownabove. Hence the rules 5{8 or 9{10 can be applied only as a part ofderivations (1) or (2), respectively.Consequently, unmarked nonterminals in a sentential form can onlybe changed by the rules 1{4, and their application can be simulatedby the grammar G: Moreover, the inverse morphism h�1 �lters onlythe sentential forms with all the nonterminals marked. Therefore,g(h�1(L(G1))) � L(G): 2N ote: The weight 3 of the insertion grammar is needed in several ofthe above described rules. In particular, consider the rules 5{7 and 10used for migrating through marked nonterminals. We need to regulate theirapplication due to the symbol next to the marked (i.e. \deleted") one. Asthe substring consisting of the marked nonterminal together with its markhas length 2, this regulation needs a context of length 3. Therefore, it seemsthat the weight 3 cannot be further improved with the \mark and migrate"technique.Note also that the above construction can be easily adapted to use a gsminstead of a morphism and a weak coding.3 Universality with quotientTheorem 5 There exists a regular language R with the following property:for each recursively enumerable language L there is a language L0 2 S3 such6



that L = L0 �!rq R:Proof. We express the given recursively enumerable language L in the form[4, 6] L = (L \ f�g) [ [a2Tfag(L �!lq fag):Denote by G0 = (N0; T; P0; S0) the type-0 grammar generating L: Noticethat grammars Ga = (Na; T; Pa; Sa) generating languages L �!lq fag; a 2T; can be e�ectively constructed starting from G0: Let us assume that all thesets Na; a 2 T; and also N0 are mutually disjoint. Denote N = N0[Sa2T Naand P = P0 [Sa2T Pa:To construct the required language L0 2 S3; we need to alter the con-struction of Theorem 4 as follows. Consider an insertion grammarG1 = (V; dcS [ [a2T acSa; P1);where V = N[N 0[N[T[f$;#; c; dg; N 0 = fA0 jA 2 Ng; N = fA jA 2 Ng;and $;#; c; d are symbols not in N [N 0 [N [ T: Again let Nc = N [ fcg:The set of rules P1 from the proof of Theorem 4 is changed as follows:� the rules of type 1 are completely omitted and replaced by types 11{14described bellow;� in the rules of type 2 and 4, x becomes an element of (N3c [fcgN[fcg);� in the rules 5, 6 and 7, Y becomes an element of (Nc [N 0 [N);� in the rules of type 9, x becomes an element of (V (V nf$g)(N nfBg)[(N [ f#g)$(Nc [N 0) [N);The rest of the construction is unchanged except that the rede�ned set V isused in the rules. The following new rules are added:11. (bc;A$; A) for all b 2 T and A 2 N ;12. (b; ac$; cA) for a; b 2 T and A 2 N such that (A! a) 2 P ;13. ($c; $; A) for all A 2 N ;14. (a; d; c) for all a 2 T: 7



The rules 11{13 simulate a rule A! a by the derivationbcA) bcA$A) bac$cA$A) bac$c$A$A; (3)for a; b 2 T and A 2 N: Similarly as in the previous proof, one can easilycheck that (i) this derivation cannot be altered by any of the previouslyde�ned rules, (ii) the rules 11{13 can be applied only in the described suc-cession as a part of the above derivation. The purpose of the derivation(3) is to collect all the terminal symbols as a pre�x of the derived string.Finally, consider the regular setR = dc($Nc [ $N 0 [ $N [#)�:Rule 14 stops the production of terminal symbols and allows the right quo-tient with the set R to produce a nonempty result. One can notice that theapplication of the rule 14 can follow immediately after 11, but in this casethe right quotient with R will be empty, as there remains a non-removablesubstring dcA: If 14 is applied immediately after 12, then the rule 13 canstill be applied later.Now we are ready to show that L(G0) = L0 �!rq R:(i) L(G0) � L0 �!rq R:Any string in L(G0) n f�g is contained in fagL(Ga) for some a 2 T:Moreover it can be obtained via a leftmost derivation of Ga: Thisderivation can be simulated by G1 as follows. We start from the axiomacSa and simulate the rules of the form A! BC; AB ! AC; A! �as in the previous proof.A ruleA! a can be simulated only by the rules 11{13. The simulationstarts only if A is the right neighbor of c in the generated string.Therefore, A must be the leftmost unmarked nonterminal from N: Ifthere are marked symbols to the left of A; then A must bubble to theleft using rules 5{8 before the simulation of the rule A! a:The whole process is repeated until all the nonterminals in the stringare marked by $, and then the rule 14 is applied once. Then a gen-erated string belongs to the set xdc($Nc [ $N 0 [ $N [ #)�; for anx 2 L(G0); and therefore x 2 L0 �!rq R:If (and only if) � 2 L(G0); then starting from the axiom dcS we canproduce a string in dc($Nc[$N 0[$N[#)�; and therefore � 2 L0 �!rqR: 8



(ii) L0 �!rq R � L(G0):We have already shown in the proof of Theorem 4 that the only thingthe rules 2{10 can do is to simulate a derivation of G0: The new rules11{13 can only simulate a leftmost application of rules of the formA ! a; as follows by (3) and the above explanation. Any sententialform obtained before an application of rule 14 will produce the emptyset by right quotient with R, and can therefore be discounted. If,after an application of the rule 14, all nonterminals are marked, thenthe result of the right quotient with R is a correct string from L(G0):Otherwise again an empty set results. 2A proof can be easily adapted to use the left quotient instead of the rightquotient if we replace all the axioms and rules by their mirror images. Inthe case of rules this also means that the left context is replaced by a mirrorimage of the right context, and vice versa.4 Application in DNA computingIt is known that contextual insertion and/or deletion of in DNA frequentlyoccurs in certain cell types. For instance, it is essential for operationswith plasmides; is occurs also during a transfer between micronucleus andmacronucleus in cilliates. Therefore this operation has been formalizedwithin the DNA computing framework. The following de�nition is due to[7].De�nition 6 An insdel system is a construct 
 = (V; T;A;R); where V isan alphabet, T � V , A is a �nite language over V , and R is a �nite set oftriples of the form (u; �=�; v), where u; v 2 V �; (�; �) 2 (V +�f�g)[ (f�g�V +):The elements of T are terminal symbols, those of A are axioms, the triplesin R are insertion-deletion rules. The meaning of (u; �=�; v) is that � canbe inserted in between u and v; the meaning of (u; �=�; v) is that � can bedeleted from the context (u; v). Stated otherwise, (u; �=�; v) corresponds tothe rewriting rule uv ! u�v, and (u; �=�; v) corresponds to the rewritingrule u�v ! uv. These rules are applied in the manner usual in insertionand deletion grammars. The generated language is the set of all terminalwords which can be obtained from the axiom set A by an application of therules in R: 9



Furthermore, there is a hierarchy of the insdel systems due to the lengthof the context in rules. The weight of an insdel system 
 = (V; T;A;R) is afour-tuple (n;m; p; q); wheren = maxfj�j j (u; �=�; v) 2 Rg;m = maxfjuj j (u; �=�; v) 2 R or (v; �=�; u) 2 Rg;p = maxfj�j j (u; �=�; v) 2 Rg;q = maxfjuj j (u; �=�; v) 2 R or (v; �=�; u) 2 Rg:The expression INSmn DELqp, for n;m; p; q � 0, denotes the family of lan-guages generated by insdel systems of weight (n0;m0; p0; q0) such that n0 � n;m0 � m; p0 � p; q0 � q.Several universality results has been shown for insdel systems in [7].For instance, the classes INS 11DEL02 and INS 21DEL11 both equal to the classof recursively enumerable languages. For the insdel systems without dele-tion rules, however, only results analogous to those at [6] have been shown.Therefore we can improve Theorem 6.10 in [7] as follows.Theorem 7 For each recursively enumerable language L there exists a mor-phism h; a weak coding g and a language L1 2 INS 33DEL00 such that L =g(h�1(L1)):The statement follows immediately by Theorem 4 and its proof. Similarlyour Theorem 5 improves Corollary 6.1 in [7] as follows.Corollary 8 There exists a regular language R with the following prop-erty: for each recursively enumerable language L there is a language L0 2INS 33DEL00 such that L = L0 �!rq R:Finally, Corollary 3 in [6] together with Corollary 6.2 in [7] can be strength-ened as follows.Corollary 9 All families Sn and all families INS nmDEL00; m; n � 3; areincomparable with each family F where LIN � F � RE and F is closedunder weak codings and inverse morphisms, or under left/right quotient withregular languages.5 ConclusionWe have characterized the class of recursively-enumerable languages by us-ing pure insertion grammars, �ltered via an inverse morphism and a weak10
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