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Abstract

We study the computational power of pure insertion grammars.
We show that pure insertion grammars of weight 3 can characterize all
recursively enumerable languages. This is achieved by either applying
an inverse morphism and a weak coding, or a left (right) quotient
with a regular language. A consequences for the closure properties of
insertion grammars are shown. We also study an application in DNA
computing and improve some known results concerning the power of
insertion-deletion DNA systems.

1 Introduction

Insertion grammars have been introduced and studied in [2]. The motivation
for their study originates in mathematical linguistics, as they are similar
to contextual grammars [3, 5] and to pure grammars with a specific type
of rules. Their computational power was further studied in [6] where the
following result was proven: Insertion grammars of weight at least 7 can
characterize all recursively enumerable languages via a weak coding and a
morphism. An analogous result was shown using the left quotient with a
regular language instead of a weak coding and a morphism, on the one hand.
On the other hand, there exist linear languages which cannot be generated
by any insertion grammar (without the aid of above mentioned operations).
This fact suggests rather poor closure properties of the class of insertion



languages. Another immediate consequence is the incomparability of this
class with many other language classes closed either under weak codings and
morphisms, or under left quotient with a regular language.

The upper bound for the weight necessary to characterize the family of
recursively enumerable languages was improved to 5 in [4]. In this paper
we show that weight 3 is enough to achieve universality in the above sense.
Our construction is similar to that in [4] in that it uses a special symbol
$ to mark deleted symbols in a sentential form. In our proof we use two
marking symbols $, #, and we achieve an improvement in the length of
context thanks to their mutual interplay.

Finally, we deal with insertion-deletion DNA systems. These are mo-
tivated by the fact that the contextual insertion and/or deletion in DNA
frequently occurs in certain cell types. Formalization is based on operations
very similar to those used in insertion grammars. We show that as a conse-
quence of the above mentioned results, some theorems in [7] are improved.

Recall that a pure grammar is a grammar that has no non-terminals.
Rewriting is defined in the standard way and a specific pure grammar is
defined by axioms (a set of words over the terminal alphabet) and a finite
set of rewriting rules. All words derivable from the axioms belong to the
language of the pure grammar.

Definition 1 A (pure) insertion grammar of weight n > 0 is a triple G =
(V, A, P), where

- V is a finite alphabet,
A CV* is a finite set of axioms,

— P is a finite set of insertion rules of the form (u,x,v), for u,z,v € V*,
n = max{|u| | (u,z,v) € P or (v,z,u) € P}.

Definition 2 A derivation step of a insertion grammar G = (V, A, P) is
defined by the relation =: V* — V* such that

y = z iff y = wiuvwsy, z = wyurvwsy, (u,x,v) € P, wy,ws € V™.

The language generated by an insertion grammar G = (V, A, P) is de-
fined in the usual manner as the set L(G) = {z C V* | y =" 2z, y € A},
where =* is the reflexive and transitive closure of = . We denote by .5,
n > 0 the families of languages generated by the insertion grammars of
weight at most n. Clearly, S, C S, for n < m.

We also recall the following definition from [8].



Definition 3 A type 0 grammar G = (N, T, P, S) is in Penttonen normal
form, if each rule in P has one of the forms

A—a, A—- BC, AB— AC, A— X, for AAB,C €N, aeT.

A weak coding is a morphism that maps each letter onto a letter or onto
the empty word.

2 Universality with inverse morphism and weak
coding

Theorem 4 For each recursively enumerable language L there exists a mor-
phism h, a weak coding g and a language Ly € Sz such that L = g(h~'(Ly)).

Proof. Let G = (N,T,P,S) be a recursively enumerable grammar in
Penttonen normal form, generating a language L. Consider the following
insertion grammar:

G1 = (V,cceS, Py),

where V.= NUN'UTU{S, #,c}, N' = {A'| A € N}, and $, #, c are symbols
not in N U N'UT. We furthermore denote N, = N U {c}. The set of rules
P, is constructed as follows:

1. For each rule A — a in P there are rules (z,a$, Ay) in Py, for all
€N,y e (V\{#}).

2. For each rule A — BC in P there are rules (z, BC$, Ay) in P, for all
€N,y e (V\{#}).

3. For each rule AB — AC in P there are rules (zA,C$, By) in Py, for
all z € (V\{8}), y € (V\{#}).

4. For each rule A — X in P there are rules (z,$, Ay) in Py, for allz € N?
and y € (V\ {#}).

In addition to the above, P; contains the following rules:

5. (z,B',$Y B) for all z € (V2N,US$V#),Y € (NUN'), B € N.

- (

6. (B'$Y,#$,Bz) forall z € (V2\ {#B}),Y € (NUN'), B€ N;

7. (B, #,8Y#) forall Y € (NUN'), B€ N.
|

8. (z,B$,B'#) for all z € (V' \ {$}), B € N.



9. (z,B,#B) for all x € (V(V\ {$})(N\ {B}) U (N U{#}S$(NUN")),
BeN.

10. (xB+#,$,B) for all z € (V \ {$}), B € N.

The insertion grammar G simulates step-by-step the derivation of G.
However, G can rewrite or delete some symbols of the generated sentential
form, which is impossible in insertion grammars. Hence a marking symbol
$ is introduced into G;. A nonterminal from N U N’ which is preceded by $
is marked as deleted. This is achieved by the rules of types 1 4 of G.

This marking system introduces another problem: pairs of unmarked
nonterminals which should be subject to rules of the form AB — AC can be
separated by one or more marked symbols. Such a string can adopt the form
A$C, ...8C, B, n > 1. Hence the rules 5-8 are added, allowing the symbol
B to “migrate” to the left-hand side of a substring of this form. Having the
substring $Y B for an arbitrary B € N, Y € (N U N'), these rules allow for
the derivation

SYB = B'SYDB = B'SY#$B = B'#$YV#$B = B$B'#S$Y#$B (1)

At the end all the symbols from N U N’ are marked, except B. Iterating
the above derivation, the string A$C, ...$C,, B can be rewritten as ABux,
where in z all the nonterminals are marked. Still, this scheme introduces
another symbol # which can separate pairs of nonterminals. Therefore the
rules 9 and 10 are introduced, allowing for the derivation

#B = B#B = B#$B (2)

for an arbitrary B € N. This again allows the symbol B to migrate towards
the left end of the string. Finally, let & : (V' \{$})*) — V* be the morphism
defined by

h(z) =%z, z € (NUN'), and h(y) =y, y € (T U {c,#}),
and g : V¥ — T™ be the weak coding defined by
glz) =X, z€(V\T), andg(y) =y, y € T.
We show that L(G) = g(h ' (L(G1))).

(i) L(G) € g(h™"(L(G1))).

One can easily verify that if the rules of G| are used in the above



described manner, then G correctly simulates all the derivations of
G. During this derivation, a certain amount of auxiliary substrings of
the form $A4, $A" and # can be inserted into the derived string. The
inverse morphism A~' filters only the sentential forms where all the
nonterminals from N U N’ are preceded by $ signs. Hence h~! selects
from L(G4) those and only those sentential forms where all nontermi-
nals have been “deleted”. Finally, g removes all the nonterminals and
auxiliary symbols. Hence, L(G) C g(h~ ' (L(G1))).

g(h~1(L(Gh))) C L(G).

We must show that G; can produce no other sentential forms w with all
the nonterminals marked than those that correspond to derivations in
G. First, observe that the substrings $8, ##, $# can never occur in w.
Observe also that during an incomplete series of applications of rules
5-8 and 9-10 there exists always at least one unmarked nonterminal
from N U N'. Consequently, only those sentential forms that are the
result of a “complete” series of applications of rules 5-8 and 9-10 are
selected when applying h~! (hence when applying g - h~!).

Consider now the rules 5 8.

— Given a substring of the form $§Y B of w, rule 5 can be applied only
once to it, producing B'$Y B. Observe also that B’$Y B cannot
be produced by an application of any other rule than 5.

— Following an application of rule 5, only rule 6 can follow, which
inserts any symbols into B'$Y B (not counting its prefixes or suf-
fixes), resulting in the string B'$Y #$B. Observe that 6 can be
applied only to a string of the form B'$Y B produced by rule 5.

— Similarly, the only rule that can insert anything into B'$Y #$B
is rule 7. Again, the substring B’$Y #$ to which rule 7 can be
applied, can be produced only as a result of the two previous
steps.

— Finally, the substring zB'#, = # $, allowing an application of
the rule 8 (and of no other rule), can occur only as a result of the
previously described steps.

Hence, after an application of rule 5, the whole derivation (1) must
inevitably proceed.

Analogously, consider a substring of the form zB#B, = € V, produced
by rule 9. The only rule which can insert anything into this string is



rule 10, resulting in the derivation (2). Conversely, the application of
10 is allowed only by a previous application of 9.

Of course, the derivations (1) and (2) can be interlaced by an appli-
cation of other rules in other parts of the sentential form w. However,
these other rules cannot interfere with these derivations. Consider for
instance the derivation

1Y #B s 7Y B#B 3 ©B'$Y B#B
9 5

foranz € V,Y € (NUN'), B € N. In this situation rule 6 cannot be
applied (because of its right context) until rule 10 was applied first.
Hence the derivation (2) happening at the right-hand side of the string
is completed, before the derivation (1) can continue.

We can conclude that each of the rules 6 8 and 10 requires a previous
application of a rule with the index smaller by one, as we have shown
above. Hence the rules 5 8 or 9 10 can be applied only as a part of
derivations (1) or (2), respectively.

Consequently, unmarked nonterminals in a sentential form can only
be changed by the rules 1 4, and their application can be simulated
by the grammar G. Moreover, the inverse morphism A~ filters only
the sentential forms with all the nonterminals marked. Therefore,

g(h"H(L(G1))) € L(G).
O

Note: The weight 3 of the insertion grammar is needed in several of
the above described rules. In particular, consider the rules 5 7 and 10
used for migrating through marked nonterminals. We need to regulate their
application due to the symbol next to the marked (i.e. “deleted”) one. As
the substring consisting of the marked nonterminal together with its mark
has length 2, this regulation needs a context of length 3. Therefore, it seems
that the weight 3 cannot be further improved with the “mark and migrate”
technique.

Note also that the above construction can be easily adapted to use a gsm
instead of a morphism and a weak coding.

3 Universality with quotient

Theorem 5 There exists a reqular language R with the following property:
for each recursively enumerable language L there is a language L' € S3 such



that L = L' — .4 R.

Proof. We express the given recursively enumerable language L in the form
[4, 6]

L= (Ln {3 U [JlaHL —q {a}).

a€eT

Denote by Gy = (No, T, Py, Sp) the type-0 grammar generating L. Notice
that grammars G, = (N,, T, P,, S,) generating languages L —q {a}, a €
T, can be effectively constructed starting from . Let us assume that all the
sets Ny, a € T, and also Ny are mutually disjoint. Denote N = NoUUJ, 1 Na
and P = PyU,cr Pa-

To construct the required language L' € S3, we need to alter the con-
struction of Theorem 4 as follows. Consider an insertion grammar

Gy = (V.deS U | ] acS,, P),
a€T

where V.= NUN'UNUTU{$, #,c,d}, N' = {A'|A€ N}, N ={A|A € N},
and $, #, c¢,d are symbols not in N U N’ U N UT. Again let N, = N U {c}.
The set of rules P; from the proof of Theorem 4 is changed as follows:

e the rules of type 1 are completely omitted and replaced by types 11 14
described bellow;

e in the rules of type 2 and 4, x becomes an element of (N3U{c} NU{c});
e in the rules 5, 6 and 7, Y becomes an element of (N, UN' U N);

e in the rules of type 9, 2z becomes an element of (V(V\ {$})(N \{B})U
(N U{#})8(N. UN")UN),

The rest of the construction is unchanged except that the redefined set V is
used in the rules. The following new rules are added:

11. (bc, A$, A) for allbe T and A € N;
12. (b, ac$,cA) for a,b € T and A € N such that (A — a) € P;
13. ($¢,$,A) forall A€ N;

14. (a,d,c) for alla € T.



The rules 11-13 simulate a rule A — a by the derivation
bcA = bcA$A = bac$cA$A = bac$c$ASA, (3)

for a,b € T and A € N. Similarly as in the previous proof, one can easily
check that (i) this derivation cannot be altered by any of the previously
defined rules, (ii) the rules 11-13 can be applied only in the described suc-
cession as a part of the above derivation. The purpose of the derivation
(3) is to collect all the terminal symbols as a prefix of the derived string.
Finally, consider the regular set

R =dc($N, USN' USN U #)*.

Rule 14 stops the production of terminal symbols and allows the right quo-
tient with the set R to produce a nonempty result. One can notice that the
application of the rule 14 can follow immediately after 11, but in this case
the right quotient with R will be empty, as there remains a non-removable
substring dcA. If 14 is applied immediately after 12, then the rule 13 can
still be applied later.

Now we are ready to show that L(Gq) = L' —q R.

(i) L(Gy) C L' — 4 R.
Any string in L(Gg) \ {\} is contained in {a}L(G,) for some a € T
Moreover it can be obtained via a leftmost derivation of G,. This
derivation can be simulated by G; as follows. We start from the axiom
acS, and simulate the rules of the form A — BC, AB — AC, A — A
as in the previous proof.

A rule A — a can be simulated only by the rules 11-13. The simulation
starts only if A is the right neighbor of ¢ in the generated string.
Therefore, A must be the leftmost unmarked nonterminal from N. If
there are marked symbols to the left of A, then A must bubble to the
left using rules 5-8 before the simulation of the rule A — a.

The whole process is repeated until all the nonterminals in the string
are marked by $, and then the rule 14 is applied once. Then a gen-
erated string belongs to the set zdc($N. U SN’ U $N U #)*, for an
z € L(Gy), and therefore x € L' —q R.

If (and only if) A € L(Gy), then starting from the axiom deS we can
produce a string in de($N,USN'USN U#)*, and therefore A € L' —
R.



(ii) L' —q R C L(Gy).

We have already shown in the proof of Theorem 4 that the only thing
the rules 2-10 can do is to simulate a derivation of Gy. The new rules
11 13 can only simulate a leftmost application of rules of the form
A — a, as follows by (3) and the above explanation. Any sentential
form obtained before an application of rule 14 will produce the empty
set by right quotient with R, and can therefore be discounted. If,
after an application of the rule 14, all nonterminals are marked, then
the result of the right quotient with R is a correct string from L(G)).
Otherwise again an empty set results.

O

A proof can be easily adapted to use the left quotient instead of the right
quotient if we replace all the axioms and rules by their mirror images. In
the case of rules this also means that the left context is replaced by a mirror
image of the right context, and vice versa.

4 Application in DNA computing

It is known that contextual insertion and/or deletion of in DNA frequently
occurs in certain cell types. For instance, it is essential for operations
with plasmides; is occurs also during a transfer between micronucleus and
macronucleus in cilliates. Therefore this operation has been formalized
within the DNA computing framework. The following definition is due to
[7].

Definition 6 An insdel system is a construct v = (V,T, A, R), where V is
an alphabet, T C V, A is a finite language over V, and R is a finite set of
triples of the form (u,a/B,v), where u,v € V*, (o, 8) € (VT x {A})U({A} x
V).

The elements of T' are terminal symbols, those of A are azioms, the triples
in R are insertion-deletion rules. The meaning of (u, A\/B,v) is that § can
be inserted in between u and v; the meaning of (u, /X, v) is that a can be
deleted from the context (u,v). Stated otherwise, (u, A/B,v) corresponds to
the rewriting rule uv — ufv, and (u,a/A,v) corresponds to the rewriting
rule uav — uv. These rules are applied in the manner usual in insertion
and deletion grammars. The generated language is the set of all terminal
words which can be obtained from the axiom set A by an application of the
rules in R.



Furthermore, there is a hierarchy of the insdel systems due to the length
of the context in rules. The weight of an insdel system v = (V,T, A, R) is a
four-tuple (n,m;p,q), where

n = max{|5| | (u, A/B,v) € R},
m = max{[ul | (u, A/6,0) € R or (v, \/f.u) € R},
p =max{|al | (u,a/A,v) € R},

g = max{|u| | (u,a/X,v) € Ror (v,a/\u) € R}.

The expression INSJ'DEL], for n,m,p,q > 0, denotes the family of lan-
guages generated by insdel systems of weight (n/,m’;p’, ¢') such that n' < mn,
m' <m,p' <p,q <q.

Several universality results has been shown for insdel systems in [7].
For instance, the classes INS1DEL) and INS?DEL; both equal to the class
of recursively enumerable languages. For the insdel systems without dele-
tion rules, however, only results analogous to those at [6] have been shown.
Therefore we can improve Theorem 6.10 in [7] as follows.

Theorem 7 For each recursively enumerable language L there exists a mor-
phism h, a weak coding g and a language L1 € INS%DELg such that L =

g(h="(L1)).

The statement follows immediately by Theorem 4 and its proof. Similarly
our Theorem 5 improves Corollary 6.1 in [7] as follows.

Corollary 8 There exists a regular language R with the following prop-
erty: for each recursively enumerable language L there is a language L' €
INS3DEL] such that L = L' —q R.

Finally, Corollary 3 in [6] together with Corollary 6.2 in [7] can be strength-
ened as follows.

Corollary 9 All families S, and all families INS", DELY, m,n > 3, are
incomparable with each family F where LIN C F C RE and F is closed
under weak codings and inverse morphisms, or under left/right quotient with
reqular languages.

5 Conclusion

We have characterized the class of recursively-enumerable languages by us-
ing pure insertion grammars, filtered via an inverse morphism and a weak
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coding, or by a right quotient. Notice that both constructions in Theorems
4 and 5 are effectively computable. This is not the case e.g. in [6] where the
construction leading to Corollary 2 uses a non-computable axiom set.

Our results improve previously known lower bounds on the necessary size
of context in universal insertion grammars. We have shown that insertion
grammars with context of the length n > 3 are universal generators in the
above explained sense. It has been shown in [6] that with the length of
context n < 1, the languages generated using the above mentioned filters
belong to the context-free class. For context of the length n = 2, it is only
known that the class Sy is strictly contained in CS but incomparable with
CF, and its characterization remains an open problem.
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